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On the identification of a vortex 
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Considerable confusion surrounds the longstanding question of what constitutes a 
vortex, especially in a turbulent flow. This question, frequently misunderstood as 
academic, has recently acquired particular significance since coherent structures (CS) 
in turbulent flows are now commonly regarded as vortices. An objective definition of 
a vortex should permit the use of vortex dynamics concepts to educe CS, to explain 
formation and evolutionary dynamics of CS, to explore the role of CS in turbulence 
phenomena, and to develop viable turbulence models and control strategies for 
turbulence phenomena. We propose a definition of a vortex in an incompressible flow 
in terms of the eigenvalues of the symmetric tensor S2+a2;  here S and 0 are 
respectively the symmetric and antisymmetric parts of the velocity gradient tensor Vu. 
This definition captures the pressure minimum in a plane perpendicular to the vortex 
axis at high Reynolds numbers, and also accurately defines vortex cores at low 
Reynolds numbers, unlike a pressure-minimum criterion. We compare our definition 
with prior schemes/definitions using exact and numerical solutions of the Euler and 
Navier-Stokes equations for a variety of laminar and turbulent flows. In contrast to 
definitions based on the positive second invariant of V u  or the complex eigenvalues of 
Vu, our definition accurately identifies the vortex core in flows where the vortex 
geometry is intuitively clear. 

1. Introduction 
The concept of vortices is as old as the subject of hydrodynamics; yet, an accepted 

definition of a vortex is still lacking. Turbulence is viewed as a tangle of vortex 
filaments, and much of turbulence physics is well explained using the concepts of vortex 
dynamics (e.g. see Tennekes & Lumley 1972; Hunt 1987). Turbulent shear flows have 
been found to be dominated by spatially coherent, temporally evolving vortical 
motions, popularly called coherent structures (CS) (Cantwell 1981 ; Lumley 1981 ; 
Hussain 1980). Vortex dynamics, which govern the evolution and interaction of CS and 
coupling of CS with background turbulence, is promising not only for understanding 
turbulence phenomena such as entrainment and mixing, heat and mass transfer, 
chemical reaction and combustion, drag, and aerodynamic noise generation, but also 
for viable modeling of turbulence (Hussain & Melander 1991). We must identify 
dynamically significant, large-scale vortical regions in turbulent flows as a necessary 
first step, which in turn necessitates an objective definition of a vortex. 

Several conditional-sampling techniques have been suggested for CS eduction in 
experiments and numerical simulations (e.g. Mumford 1982; Blackwelder 1977; 
Fiedler & Mensing 1985; FerrC & Giralt 1989; Kim 1985; Hussain 1986). In 
transitional flows, eduction is relatively simple because transitional CS occur with 
detectable regularity in time and space. Hence, a reference signal such as velocity can 
be used as a trigger for eduction (Hussain & Zaman 1980; Cantwell & Coles 1983). 
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However, in fully developed turbulent flows, such as far-field regions of jets, wakes and 
mixing layers, instantaneous vorticity fields are necessary to infer the dynamical 
significance of vortical structures (Tso 1983; Tso & Hussain 1989; Hussain & 
Hayakawa 1987; Bisset, Antonia & Browne 1990). Unfortunately, even instantaneous 
vorticity fields are inadequate to reveal CS in turbulent boundary layers (Robinson 
1991). 

Intuitively, a vortex is often considered to be a tube whose surface consists of vortex 
lines (Lamb 1945, p. 202). However, the existence of a vortex tube does not imply the 
existence of a vortex; for instance, a vortex tube in a laminar pipe flow is not a vortex 
in any sense. 

Specific definitions of a vortex have been recently proposed. Lugt (1979) defines a 
vortex as a ‘multitude of material particles rotating around a common center’. 
According to Chong, Perry & Cantwell (1990), a vortex is a region of complex 
eigenvalues of Vu, while Hunt, Wray & Moin (1988) identify a vortex as a region 
containing both apositive second invariant of Vu and low pressure. These definitions will 
be discussed in more detail in s 2 . 2  and 3. 

Using a DNS database, Robinson (1991) showed that the low-pressure criterion 
effectively captures vortical structures in a turbulent boundary layer. However, in 
general, an appropriate pressure level cannot be specified to identify all vortical regions 
in a flow. Also, in a mixing layer, pressure within the longitudinal ribs between large- 
scale spanwise rolls may not be sufficiently low, so that a single pressure threshold 
cannot reveal both ribs and rolls (see $2.1). 

Recognizing that the size of a vortex in a viscous fluid depends on the identifier’s 
threshold selected, we limit our interest here to the identification of vortex cores. 
Numerous studies suggest that the cores of vortical CS in turbulent flows are well 
localized in space. 

We consider the following to be the requirements for a vortex core: 
(i) A vortex core must have a net vorticity (hence, net circulation). Thus, potential 

flow regions are excluded from vortex cores, and a potential vortex is a vortex with zero 
cross-section. 

(ii) The geometry of the identified vortex core should be Galilean invariant. 
Unfortunately, these requirements do not result in a single identification scheme. 

Therefore, we will use these requirements only as a preliminary check of potential 
identification schemes. Our objective is to develop a scheme which identifies vortex 
cores in any flow. In this paper, we do not focus on the dynamical significance of 
vortices or CS, but only on their objective detection. 

In the next section, we will show that intuitive definitions fail in many situations. The 
definitions of Chong et al. (1990) and Hunt et al. (1988) will be summarized in $3, and 
a new definition will be introduced in $4. Finally, in $ 5 ,  previous definitions will be 
compared with ours using exact and numerical solutions of the Euler and 
Navier-Stokes equations. During comparison of various definitions, we will discuss 
our basis for preferring one definition over another. 

2. Inadequacies of intuitive measures 
In this section, we discuss that three common intuitive indicators of vortices - 

pressure minimum, closed or spiralling streamlines and pathlines, and isovorticity 
surface - are inadequate in detecting vortices in an unsteady flow in general. 
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2.1. Local pressure minimum 
The physical reasoning for this criterion is that, in a vortex, pressure tends to have a 
local minimum on the axis of a circulatory or swirling motion when the centrifugal 
force is balanced by the pressure force (the so-called cyclostrophic balance), which is 
strictly true only in a steady inviscid planar flow. The concept of a local pressure 
minimum in three dimensions requires clarification because pressure may have a 
minimum in all directions at a point, or it may have a minimum only in a plane 
perpendicular to the vortex axis (e.g. Burgers vortex). Here, we will discuss the latter 
condition (i.e. minimum in a plane), which is less restrictive and may include the former 
case as well. This is related to Hunt et al.’s (1988) second condition, i.e. pressure in the 
core is lower than that near the vortex boundary. 

A well-defined pressure minimum can exist in an unsteady irrotational motion which 
does not necessarily involve a vortex by the first requirement in 0 1. Consider an 
unsteady irrotational axisymmetric motion with a stagnation point: u, = - a(t) r, 
uo = 0, and u, = 2a(t)z. Integrating the Euler equations, we find that pressure is 

p = (&-a2);r2+(-&-a2)z2, 

where i is the time derivative of the strain rate a(t). When &-a2 > 0, pressure has a 
local minimum in any (r, @)-plane, even though the flow has no vorticity, nor even swirl, 
and hence, there is no vortex core. This pressure minimum is a simple consequence of 
the unsteady strain rate a(t). Even in a steady flow, there is a well-known exception 
where the centrifugal force is balanced not by the pressure force but by the viscous 
force: Karmhn’s viscous pump. In this case, the centrifugal force does not affect the 
radial pressure distribution, which is constant in planes perpendicular to the vortex 
axis. Another counter example is Stokes flow (at very low Re), where the pressure 
gradient is balanced only by the viscous term, so that pressure satisfies the Laplace 
equation. From the minimum principle for this equation, it follows that a local 
pressure minimum is impossible in planar Stokes flows, while vortices can occur (e.g. 
viscous vortex near a sharp corner (Moffatt 1963) and vortices in front of and behind 
a step (Panton 1984, p. 641)). In addition, planar irrotational flows such as sink or 
source flows have a pressure minimum at the origin but involve no swirl whatsoever. 
Thus, the existence of a local pressure minimum is neither a sufficient nor a necessary 
condition for the presence of a vortex core in general. 

(here the 
subscript comma denotes partial differentiation, and the summation convention is used 
for indices), pressure is inherently of a larger scale than vorticity. For example, in a 
Lamb vortex (a decaying axisymmetric vortex from an initial line vortex; see Lamb 
1945, p. 592) (see figure 1 a), vorticity nearly vanishes (to 1.8 YO of maximum) at r = 
4(vt)l/’, while pressure still has a significant value (- 25 YO of the maximum negative 
value). In a Burgers vortex (a steady rectilinear vortex in an axisymmetric strain field; 
this vortex undergoes axisymmetric stretching due to the irrotational strain rate, the 
stretching being balanced by the diffusion of vorticity; see Batchelor 1967, p. 272), 
where the lengthscale of vorticity (and thus the lengthscale of the vortex core) is fixed, 
the lengthscale of the pressure hump, i.e. the radius of the applar = 0 point (figure 1 b) 
increases with the value of the vorticity on the axis. This inherent scale difference 
between a vortex core and the associated low-pressure region makes the demarcation 
of vortices, using an isopressure surface, problematic. For example, in a mixing layer, 
an isopressure surface fails to capture ribs and rolls simultaneously (see figure l c ;  
compare with the corresponding isovorticity surface shown in figure 7e). If a lower 

Since pressure is governed by the Poisson equation, V2p = 



72 J .  Jeong and F. Hussain 

-0.2 1 r 

P 

FIGURE 1. (a) Pressure and vorticity distributions in a Lamb vortex. (b) Pressure and vorticity 
distributions in a Burgers vortex; w,, is the vorticity at the vortex centre. (c) Isopressure surface in a 
mixing layer. 

pressure level is used to capture the ribs, the isopressure surface extends far outside the 
rolls and fails to provide any clear indication of rolls; the pressure within the ribs is 
nearly the ambient value and is much higher than that at the roll centre. 

2.2. Pathline and streamline 
Lugt (1979) proposed the use of closed or spiral pathlines to detect vortices. However, 
a pathline obviously fails to satisfy requirement (ii) in 0 1. Another critical inadequacy 
of this definition is that a particle may not complete a full revolution around the vortex 
centre (hence no closed pathline) during the lifetime of a vortex. This occurs when 
vortices undergo transition due to nonlinear processes such as pairing, tearing, core 
dynamics or breakdown before fluid particles in the vortex can undergo a full 
revolution. Also, in regions of reconnection (Melander & Hussain 1988), especially at 
high Re, pathlines and streamlines can be highly contorted because of the rapidly 
transforming vortex line topology. Even in an optimal reference frame, these 
interacting regions of vortices, which remain - and may even become more - 
dynamically significant during reconnection, would escape identification. 

The use of closed or spiral streamlines as a definition of a vortex is equally 
problematic beause they also are not Galilean invariant. This is illustrated in figure 
2 (a-c), which shows streamline patterns of an axisymmetric vortex in three different 
reference frames. Similarly, figure 2 (d-f) shows velocity vector patterns measured 
during early stages of roll pairing in an axisymmetric jet (Hussain & Zaman 1980). 
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FIGURE 2. (a-c) Streamlines of a Lamb vortex in different reference frames, moving: (a) with the 
vortex centre; (b) with a point within the core; and (c) faster than any point. (&a Distribution of 
velocity vectors in the near field of an axisymmetric jet with a reference frame velocity of: ( d )  1.25U, 
(convection velocity of lower vortex); (e)  0.3517, (convection velocity of upper vortex); and 0.8Ue 
(the average of the convection velocities of the two vortices). Dotted lines represent structure 
boundary based on vorticity magnitude. 

Thus, this definition will obscure two or more vortices moving at different speeds in any 
single reference frame and will surely fail in a turbulent flow containing numerous 
vortices advecting at different speeds. 

2.3.  Vorticity magnitude 
Vorticity magnitude (101) has been widely used to educe CS and represent vortex cores 
(Metcalfe et al. 1985; Hussain & Hayakawa 1987; Bisset et al. 1990). However, this 
approach, though fairly successful in the free shear flows investigated so far, may not 
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FIGURE 3. Axisymmetric vortex with an axial variation in vorticity: (a) vortex surface, 
(b) vorticity surface. 

always be satisfactory since 101 does not identify vortex cores in a shear flow, especially 
if the background shear is comparable to the vorticity magnitude within the vortex. 
An example is a streamwise vortex embedded in a homogeneous shear flow (see 4 5.2). 
Also, in planar wall-bounded flows, Lugt (1979) showed that the maxima and minima 
of 101 occur only at the wall. In a turbulent boundary layer, the maximum 101 occurs 
near the high-speed streak regions (Jimenez et al. 1988). However, in both cases, the 
flow immediately near the wall is characterized by shear, but by no means exhibits a 
swirling (i.e. vortical) motion. Thus, since a vortex core must exclude a wall, 101 is not 
a suitable criterion for vortex identifiation in a boundary layer. 

Even in free shear flows, there are potential difficulties in identifying vortices from 
101 surfaces. For instance, a vorticity sheet is not a vortex even though it may have a 
large vorticity magnitude. Another counter example is an axisymmetric vortex with a 
strong axial variation in vorticity, i.e. with strong core dynamics (Melander & Hussain 
1993), in which a (01 surface may terminate along the vortex axis (see the schematic in 
figure 3) indicating segmented vortices although there is only one continuous vortex 
column. 

Thus, a 101 surface at a sufficiently low level is necessary but not sufficient to detect 
a vortex in both free and wall-bounded free shear flows. Detailed examples of the 
potential misrepresentation of vortices by 101 are given in 45.2. 

3. Previously proposed definitions 
Recently, two distinct Galilean-invariant definitions of a vortex have been proposed 

using invariants of the velocity gradient tensor (Chong et al. 1990; Hunt et al. 1988; 
Melander & Hussain 1993). We review these definitions briefly in this section. 

3.1. Complex eigenvalues of velocity gradient tensor 

Chong et al. (1990) used eigenvalues of the velocity gradient tensor Vu to classify the 
local streamline pattern around any point in a flow in a reference frame moving with 
the velocity of that point (i.e. a critical point). They proposed that a vortex core is a 
region with complex eigenvalues of Vu ; complex eigenvalues imply that the local 
streamline pattern is closed or spiral in a reference frame moving with the point. 

The eigenvalues, CT, of Vu satisfy the characteristic equation 

C T ~ - P C T ~ + Q C T - R = O ,  

where P = = 0 (incompressible flow), Q = $ ( U & - U ~ , ~ U ~ , ~ )  = --'u. 2 z , 3  .u i , z  . and R = 
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Det(ui,!) are the three invariants of Vu. Complex eigenvalues will occur when the 
discriminant ( A )  is positive, i.e. 

(1) 

Note that this definition, derived from Vu, is Galilean invariant. 
The physical interpretation of this definition is provided by considering the 

streamlines of a Lamb vortex in a moving reference frame (figure 2 b). In the reference 
frame moving with particles A and B, both of which have the same velocity, a closed 
streamline pattern appears around A within the vortex core (marked by a thick line) 
that denotes positive d, and a saddle occurs at B outside the vortex core where d is 
negative. 

d = (#)3 + ($I?)' > 0. 

3.2. The second invariant of Vu and kinematic vorticity number Nk 
Hunt et al. (1988) defined an 'eddy' as the region with positive second invariant, Q, 
of Vu, with the additional condition that the pressure be lower than the ambient value. 
The second invariant Q is defined as 

where (IS11 = [tr(SSt)l1I2, Il51ll = [tr(5151t)]1/2, and S and 51 are the symmetric and 
antisymmetric components of Vu; i.e. Sii = t(ui,!+ui,,) and Q,, = $ ( U ~ , , - U , ~ ~ ) .  Thus, Q 
represents the local balance between shear strain rate and vorticity magnitude. 

It can be easily shown that Q vanishes at a wall, unlike 101; i.e. shear strain and 
vorticity have the same magnitude at a stationary wall. The most general velocity 
gradient at the wall is given by 

V U =  0 0 b ,  (: : :) 
which gives Q = 0 at the wall. Note that this necessarily implies d = 0, since R = 0 at 
the wall. Therefore, definitions based on d and Q are free from the problem associated 
with (01, which fails to properly represent vortical motion near a wall (see $2.3). 
However, as will be shown later, in spite of this advantage, definitions based on d and 
Q are not helpful in certain situations. 

Truesdell (1953, p. 107) introduced the kinematic vorticity number Nk to measure 
'the quality of rotation', instead of the local rotation rate given by JJOII. He defined Nk 
as 

Thus, Nk is a pointwise measure of Iw( non-dimensionalized by the norm of the strain 
rate, which gives the quality of rotation regardless of the vorticity magnitude. For 
example, Nk = co and Nk = 0 correspond to solid-body rotation and irrotational 
motion respectively, regardless of the 101 value. In their study of vortex core dynamics, 
Melander & Hussain (1993) identified the core of an axisymmetric vortex column as 'a 
maximally connected spatial region with Nk > 1 '. It is easy to see from (3) that a region 
with Nk > 1 is identical to that with Q > 0. However, since Nk is non-dimensionalized 
by the magnitude of strain rate, the peak Nk value is oblivious of the dynamical 
significance of a vortex. In other words, Nk does not discriminate between vortices with 
small and large vorticity (or circulation) as long as the quality of rotation is the same 
for both. 
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Q can also be interpreted as the source term of pressure in the Navier-Stokes 
equations. From the Poisson equation for pressure ( V 2 p  = 2pQ) and the maximum 
principle, we conclude that the pressure maximum occurs only on the boundary if 
Q > 0, and the pressure minimum occurs only on the boundary if Q < 0 (Truesdell 
1953). However, Q > 0 does not necessarily imply that the pressure minimum occurs 
within the region; i.e. the pressure minimum can occur on the boundary of the region 
of Q > 0. Thus, there is no explicit connection between a region with Q > 0 and a 
region of a pressure minimum. In this sense, the definitions used by Hunt et al. (1988) 
and Melander & Hussain (1993) are not strictly identical, even though in most 
situations they turn out to be equivalent. 

From (l), it is obvious that the condition Q > 0 is more restrictive than d > 0, 
although which definition is more appropriate is not clear a priori. 

4. New definition 
Although a pressure minimum cannot be used as a general detection criterion for a 

vortex core, as shown in 92.1, it provides a starting point for a new definition. The 
inconsistency between the existence of a pressure minimum and the existence of a 
vortex core arose in 92.1 due to two effects: (i) unsteady straining, which can create a 
pressure minimum without involving a vortical or swirling motion, and (ii) viscous 
effects, which can eliminate the pressure minimum in a flow with vortical motion. By 
simply discarding these effects, we expect to obtain a better indicator for the existence 
of a vortex. Since information on local pressure extrema is contained in the Hessian 
( P , ~ ~ )  of pressure, let us consider the equation for P , ~ ~ .  Taking the gradient of the 
Navier-Stokes equations, we find 

where 
decomposed into symmetric and antisymmetric parts as follows : 

is the acceleration gradient, and P , , ~  is symmetric. Then, a,,i can be 

vv 
symmetric antisymmetric 

The antisymmetric part of (4) is the well-known vorticity transport equation. The 
symmetric part of (4) is 

1 

P 
--P,ij. 

The occurrence of a local pressure minimum in a plane requires two positive 
eigenvalues of the tensor Here, as argued above, we will not consider the 
contributions of the first two terms in the left-hand side of (6) since the first term 
represents unsteady irrotational straining and the second term represents viscous 
effects. Thus, we consider only S2 +a2 to determine the existence of a local pressure 
minimum due to vortical motion and dejine a vortex core as a connected region with two 
negative eigenvalues of S2+Q2. Note that since S2+Q2 is symmetric, it has real 
eigenvalues only. If A,, A, and A, are the eigenvalues and A, 2 A, 2 A,, the new 
definition is equivalent to the requirement that A, < 0 within the vortex core. 
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A, A, A, CA, Negative A, Positive Q 
+ - - -  vortex core vortex core 
+ - -  + vortex core not vortex core 
+ + - -  not vortex core vortex core 
+ + + + not vortex core not vortex core 

TABLE 1. Possible choices of eigenvalues and the differences of the definitions based on positive Q 
and on negative A, 

From (2) and (5), 

Q = -1V.a = -ltr 2 (S2+O2) = -;(A,+A,+A,) 2 

(see also Truesdell 1953, p. 79). Then, Q can be interpreted as an average of the balance 
between (x, S2x)/(x, x) and (x, 02x)/(x, x) in all directions because 

where the integration is over the surface of an infinitesimal sphere surrounding a given 
point, A is the surface area of the infinitesimal sphere, and (, ) denotes an inner 
product. 

Unlike the definition based on positive Q, we require the balance of (x, S2x) and 
(x, 02x) in only one eigenplane. Since (x, S2x) 2 0, while (x, 02x) < 0, our new 
definition requires I(x,02x)I to be greater than (x, S2x) in one eigenplane of S2+02.  
As S2 + 8' vanishes at a wall, the new definition excludes the possibility of a vortex 
core centred at a wall. Thus, this definition with a single condition, in essence, 
incorporates features of Hunt et aZ.'s (1988) two separate conditions by considering 
only vortical contributions to local pressure minima. However, these two definitions do 
not necessarily agree; this is clearly illustrated in 95.4, where we establish the 
superiority of our definition. 

4.1. Some estimates of eigenvalues of S 2 + 0 2  
Recall that, of the eigenvalues A, 2 A, 2 A, of S 2 + 0 2 ,  since (x, S2x) 2 0 and 
(x,02x) < 0, the largest eigenvalue A, satisfies 

where CT; 2 gi 2 CT~ are eigenvalues of S2 (see Courant & Hilbert 1953, p. 31). The 
smallest eigenvalue A, is 

To summarize, 2 A, 2 CT: and A, b A, 2 -&'. We list the possible choices of 
eigenvalues and the differences of the two definitions based on positive Q and negative 
A, (i.e. negative definite S2 +a2 in one eigenplane) in table 1. 

4.2. Equivalence of dejinitions in planar f low 
In planar flows, the regions defined by the following conditions are equivalent : 

(i) negative A,; A, is the second largest eigenvalue of S2+02;  
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(ii) complex eigenvalues of Vu; 
(iii) positive Q. 
To verify this statement, consider a general velocity gradient for a planar flow: 

vu = (; ). 
-a 

The characteristic equation for eigenvalues a of Vu is v2 + Q = 0, where Q = -a2 -be. 
Thus, v = -k(-Q)’/’. Hence, condition (iii) is the same as condition (ii). Also, 

0 a2+bc 
a2+bc 

Thus, negative A, requires that a2 + bc < 0, i.e. Q > 0. Therefore, these three definitions 
are equivalent for planar flows. 

5. Applications of definitions 
In this section, the definitions discussed in $$2.3 and 3 4  will be evaluated and 

compared using exact solutions and DNS data. The prospective definitions of a vortex 
core to be analysed are summarized here for convenience. 

(i) A,-definition: the region of negative A,; A, is the second largest eigenvalue of 
S2 + 52, (surfaces with A, = 0 are excluded). 

(ii) A-definition: the region of complex eigenvalues of Vu. The boundary of this 
region is given by the surface 

(surfaces with d = 0 are excluded). 
(iii) Q-definition: the regionofpositive Q = +(llfll12- llSl/2) = -+(A,+A,+h,); A, 2 

A, 2 A, are eigenvalues of S2 + Q2 (surfaces with Q = 0 are excluded). In all examples 
considered, Hunt et aZ.’s (1988) additional condition for low pressure is found to be 
automatically satisfied. Thus, the Q-definition is equivalent to Hunt et al.’s definition 
for the examples considered in the following. 

(iv) lol-definition : the region of vorticity magnitude greater than a certain threshold. 
Note that the Iwl-definition is subjective, since it requires an arbitrary threshold on 101. 

We will evaluate these four definitions in flows where the vortex geometry is 
intuitively clear. In this way, we will justify our &-definition by demonstrating its 
success in flows where the other definitions are clearly inadequate. Many analytic 
examples and DNS databases have been tested, and only examples with significant 
differences are presented and discussed. 

d = ($Q), + (+R), = 0 

5.1. Interpretation of A-, A,- and Q-dejnitions in axisymmetric flows 
Flows in this class have circular streamlines in an inertial frame moving with the centre 
regardless of the azimuthal velocity profile. Since the flow is planar, the three 
definitions are the same, as shown in $4.2. In cylindrical coordinates, the velocity field 
can be written in general as 

u, = u, = 0, uo = V(r, t). 

- VV‘/r  0 

0 
Therefore, 
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FIGURE 4. (a) Schematic of an inviscid streamwise vortex in a homogeneous shear flow. 
(b) Contours of Iwl; ‘ M ’  denotes locations of maximum JwI. (c)  Contours of --A2. 

where V’ = aV/ar. For negative A,, it is necessary that VV’ > 0; i.e. aV2/ar > 0. Thus, 
according to each definition, a vortex core is the region where the azimuthal velocity 
magnitude increases from the centre with increasing radius. Since 

1 aru, 
r a r ’  

0 =-- 

w, is positive as long as uo = O(l/rl-a) with a 2 0, as is commonly the case. Therefore, 
the lol-definition requires an arbitrary cutoff to define a vortex core; however, the 
A-,  Q- and A,-definitions clearly identify the boundary of the vortex core as the radial 
location of maximum uo (i.e. a V 2 p  = 0). 

5.2. Inadequacy of the Jol-definition 
5.2.1. An inviscid streamwise vortex in a homogeneous shear flow 

As sketched in figure 4(a), this vortex can be considered as an idealization of a 
streamwise vortical structure in a flat-plate turbulent boundary layer (this is a typical 
structure in the wall region; see Jeong 1994). The equation of motion for streamwise 
velocity (u) is decoupled from the equations for vertical (v) and spanwise (w) velocities 
as follows: 

I au au au 
-+v-+w- = 0, 
at ay a Z  

-+v-+w- = --- 
at ay aZ p a z *  

The velocities v and w do not change in time when the streamwise vorticity is constant 
along a streamline in a (y, z)-plane. For instance, w, = Ar), where r = ( y 2  + z2)lI2, so 
that u is advected by v and w. Thus, a closed-form solution is easily obtained for a 
vortex with an initial Gaussian vorticity distribution, w, = 2 exp (- r2), superimposed 
by a uniform background shear u( y )  = Sy. That is, 

where 8 = tan-l(y/z). 
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FIGURE 5. Surfaces of: (a) IwI = 0.1 YO of maximum; (b)  101 = 30% of maximum; 
and (c) A, = 0 in an elliptic jet. 

After the flow has evolved for some time, the lo!-definition eventually exhibits two 
disconnected peaks which are irrelevant to the vortex geometry (figure 4b). 
Furthermore, since 101 changes shape and size with time, the Jol-definition is clearly 
inadequate, considering that the swirling motion of the streamwise vortex (i.e. v and w 
velocities) does not change in time. In contrast, the vortex core based on the A,- 
definition (figure 4c) is steady and shows one vortex core, consistent with the vortex 
geometry shown in figure 4(a). 

This example, together with the fact that (01 is always maximum at the wall of a (flat 
plate) boundary layer, is proof enough that the Iwl-definition is inappropriate in wall 
layers. Next, we consider difficulties of the lol-definition in a free shear flow. 

5.2.2. Elliptic vortex ring 
We consider DNS data for an elliptic vortex ring (see Husain & Hussain 1993), 

where two classes of vortices appear: an elliptic vortex ring with high 101 and rib-like 
streamwise vortices with lower 101 behind the elliptic ring. This configuration of 
vortices is particularly useful for our purpose since we can demonstrate in a realistic 
flow the inability of the Jol-definition to simultaneously represent vortices with a large 
variation in 101. The low-level 101 surface which reveals the rib vortices (figure 5 a )  does 
not clearly demarcate the elliptic vortex ring, and the IwI surface which reveals the ring 
omits the ribs (figure 5b). In comparison, the &-definition shows both the ring and ribs 
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clearly (figure 5c). Such a failure of a lol-definition is expected in a variety of other free 
shear flows. 

5.3. Inadequacy of the A-dejinition 
5.3.1, Conically symmetric vortex 

Here we consider a proposed model for a tornado (Shtern & Hussain 1993) 
consisting of a swirling jet emerging into a half-space with a source of axial momentum 
and circulation, located at the origin. The flow has a conical symmetry, satisfies the full 
Navier-Stokes equations, and has no singularity on the axis except at the origin (figure 
6a). Since this flow has an axial velocity in addition to an azimuthal velocity around 
the vortex axis (the z-axis), it exhibits strong helical motion. The velocity field in 
spherical coordinates is 

V# = ~ and x = cos8, ?w , vg=-- f ( x >  v =-- 
r r sin 6’ r sin 6 

where r, 8 and q5 are the radius, angle from the axis and azimuthal angle in spherical 
coordinates. Since this flow has a conical symmetry, the vortex core boundary should 
also be conical in shape. Contour lines near the origin ( r  = 0) are excluded in the 
following because the velocity field is singular at the origin. 

The A-definition shows two vortex cores marked by grey shading in figure 6 (b) : one 
(region 1) on the axis and another (region 2) detached from the axis, which is a 
misrepresentation of the vortex geometry. The presence of the detached region 2 can 
be explained as follows. Let us consider streamlines in the meridional flow (figure 6c). 
The velocities at points A and C are respectively larger and lower than that at point 
B, because the velocity increases as the origin is approached. When the reference frame 
moves with the point B (figure 6d) ,  the local streamline pattern around B becomes 
closed (note that this is the meridional flow only). This yields a positive-A region 
detached from the actual vortex core. In contrast, -A, is maximum and positive on the 
axis, without a spurious detached vortex core (figure 6e). 

Since CS with core dynamics contain helical vortex lines and strong axial flow 
(Melander & Hussain 1993; Schoppa, Husain & Hussain 1993), the superiority of the 
A,-definition to the A-definition in this idealized flow containing helical vortex lines is 
important for proper identification of vortices with core size non-uniformity. 

5.3.2. Mixing layer 
We now consider DNS data of a temporal mixing layer, initialized with a hyperbolic 

tangent streamwise velocity profile and a sinusoidal spanwise distribution of streamwise 
vorticity, at the time of shear layer rollup (Park, Metcalfe & Hussain 1994). Figure 7(a)  
shows a very noisy vortex core boundary based on the A-definition in this flow, while 
the A,-definition (figure 7 b )  shows both the rib and roll vortical structures clearly. A 
contour plot of A in an (x, z)-plane between ribs reveals regions of both non-negligible 
A (denoted by A in figure 7c) and negligible A (denoted by B), which are excluded in 
the A,-definition (figure 7 d ) .  The noise in regions such as B may be eliminated by a 
slight increase of the A level, which, however, will not remove regions A. This implies 
that a significant portion of the small scales evident in A (figure 7 a )  is not due to 
numerical noise, which appears outside the roll. The IwI surface and contours (figures 
7 e , f )  are also smooth, confirming the lack of significant small scales; this is consistent 
with the smooth vortex core boundary given by the A,-definition. 



82 J .  Jeong and F. Hussain 

(b) 

R 

" t  

R 
FIGURE 6. (a) Schematic of a swirling jet with conical symmetry. (b) Contours of A ;  regions of A > 0 
are marked by grey shading. (c, d )  Schematics of streamline patterns in different reference frames. 
(e) Contours of - -A2;  region of A, < 0 is marked by grey shading. 

5.3.3.  Circular jet  
DNS data at the time of vortex sheet rollup (i.e. ring formation) from a temporally 

evolving circular jet with an initial top-hat velocity profile and random vorticity 
perturbation (Melander, Hussain & Basu 1991) is used here. The &-definition also 
shows a well-defined vortical ring structure, as to be expected (figure 8a), while the A -  
definition overestimates the ring's core size and obscures its details (figure 8b). A 
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FIGURE 7. Plane mixing layer: (a) surface of A = 0; (b)  surface of A, = 0. (c)  A contours in an (x, 2)- 

plane; ( d )  - A ,  contours in an (x,z)-plane; (e) surface of IwI = 25% of maximum; cf) 101 contours 
in an (x,z)-plane. Thick lines denote the boundary of the vortex cores. 
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FIGURE 8. Circular jet: (a) surface of A, = 0; (h) surface of A = 0;  ( c )  - A ,  contours in an (x, y)-plane; 
( d )  A contours in an (x,y)-plane; (e)  surface of 101 = 55% of maximum; cf> 101 contours in an 
(x, y)-plane. Thick lines denote the boundary of the vortex cores. 

contour plot of -A ,  in an (x,y)-plane near the bottom of the vortex ring (figure 8c) 
shows seven disjointed regions of the vortex core, while the A-definition shows only 
two such regions in the same plane (figure 8d). The positive values of d in the negative 
regions of - A ,  are not negligible, showing that the A-definition clearly overestimates 
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FIGURE 9. Contours of (a) Q and (b) -A,  in a swirling jet with conical symmetry; grey area denotes 
the region of Q > 0 and A, < 0. Note that these figures cover only the near-axis region of the vortex 
in figure 6. 

the vortex core in this flow. As for the mixing layer data, a slight increase of the d level 
does not remove the noisy boundary. For example, the next level in figure 8 ( d )  is about 
15 % of the maximum value; an increase of the A contour level by 3 % gives a similarly 
noisy vortex core boundary. 

As in 55.3.2, the small scales of the vortex boundary defined by the d-definition are 
not due to small scales in the flow, as shown by the 101 surface and contours (figures 
8 e , f l .  In summary, excessively noisy vortex core boundaries occur for the A-definition 
in DNS data, a difficulty not encountered with the &-definition. 

5.4. Inadequacy of the Q-definition 
5.4.1. Conically symmetric vortex 

For a description of this flow, see 55.3.1. Since Q is negative near the axis and 
becomes positive away from it, the Q-definition shows a narrow hollow core along the 
axis (figure 9a), as compared to the geometry given by the A,-definition (figure 9b); 
note that figure 9(a, b) covers only near-axis regions of the vortex in figure 6. This 
exclusion is unreasonable because fluid particles near the axis undergo nearly solid- 
body rotation. Thus, the Q-definition does not properly represent the vortex geometry, 
while the A,-definition reveals the vortex core geometry correctly, as shown earlier 
(figure 6e) .  
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FIGURE 10. An axial vortex passing through the centre of a vortex ring: (a) schematic; 
(b) streamfunction; (c)  Q = 0;  and ( d )  A, = 0. 

5.4.2. An axisymmetric axial vortex within a vortex ring 

We consider here an inviscid, steady axisymmetric axial vortex embedded in a thin 
vortex ring as shown in figure lO(a). A small core radius of the vortex ring, 1JLr = 

where 1, and L, are the core radius of the vortex ring and the size of the domain 
in the radial direction, is used to avoid the large recirculation zone which otherwise 
appears on the axis (Batchelor 1967, p. 525). A computational box with an aspect ratio 
LJL = 4/3 and 400 x 400 grid points was used to obtain an inviscid steady solution. 
For the axial vortex, u&r, z = - L), W&Y, z = - L) and axial velocity uz(r, z = f L) are 
given as 

r = ruo(r, z = - L) = r,(l- exp (- (r /6)2)) ,  

oo(r, z = - L)  = Ua r exp (- (r /6)2) ,  

u,(r, z = k L)  = U, + Ua exp (- (r/cY)'), 
(8) I 

where U, is the propagation velocity of the vortex ring, and Ua is the axial velocity at 
the centre induced by oo of the axial vortex. r and wo at the inflow boundary are cut 
off at r = 26 to make the axial vortex compact. The steady solution is obtained by 
solving a nonlinear elliptic equation (Batchelor 1967, p. 545) : 

where H = p/p+$v2 is the total head. From the above boundary conditions (8), the 
functional relations of r and H to $ are obtained, and the nonlinear elliptic equation 
is solved iteratively. 

The streamlines in a meridional plane show that the axial vortex maintains a local 
expansion due to the induced motion of the ring (figure lob). The Q-definition 
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FIGURE 11. Bodewadt's vortex: (a) schematic; (b) distributions of A, and Q. 

incorrectly shows disconnected vortex cores (figure 1Oc) along the axis of the continuous 
axisymmetric vortex column, implying that the @definition becomes inadequate if a 
vortex expands locally due to an imposed non-uniform strain field. In contrast, the A,- 
definition correctly shows a continuous vortex core (figure 10d). 

5.4.3. Bodewadt vortex 
This flow is a vortex normal to a stationary wall with solid-body rotation (of angular 

velocity Q) far from the wall (Bodewadt 1940); that is, this flow is the inverse of the 
Karma, vortex pump mentioned in 92.1. Away from the wall, the centrifugal force is 
balanced by the radial pressure gradient (cyclostrophic balance). However, the viscous 
effect decreases the azimuthal velocity near the wall, whereas the radial pressure 
gradient remains the same as that away from the wall. As a result of the decreased 
centrifugal force near the wall, the unbalanced pressure force moves fluid near the wall 
toward the vortex axis and, by continuity, the fluid near the axis moves away from the 
wall as shown in figure 11 (a). The distance and velocity are non-dimensionalized by 
(v/Q)'/' and (vQ)l/' respectively, and the velocity and pressure fields are 

u, = rF(z), uo = rG(z), u, = H(z), P = $r2 + Po(z). 

In this case, Q is negative when z < 1.16 since the positive eigenvalue A, of S2+02 
cancels the negative eigenvalues A, and A, (figure 11 b). Since vortical motion exists for 
all z > 0, the negative value of Q near the wall indicates misrepresentation of the vortex 
core. Note that A, is negative for all z > 0 and the A,-definition is valid for this flow. 

5.5. Comparison of the four definitions for DNS data 
Why the &-definition is preferable has been demonstrated above in various examples 
where the geometry of the vortex core is known intuitively. So far, we have considered 
cases which show noticeable differences to accentuate inadequacies of definitions based 
on A ,  Q and (o(. Now, with the goal of comparing these definitions in flows of practical 
relevance, we apply all four definitions to data from three numerically simulated flows, 
where, unfortunately, a priori intuition of the geometry of vortex cores is less clear. 

As the first example, we consider a tanh-profile temporal mixing layer excited with 
spanwise perturbations to induce rollup and pairing of rolls and three-dimensional 
oblique modes to produce ribs (Schoppa 1994). To show the evolution of the flow, 101 
contours are shown in figure 12(a-c) for three time instants at a fixed spanwise 
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FIGURE 12. A temporally evolving mixing layer. (a-c) 101 distribution in an (x,y)-plane halfway 
between two adjacent ribs: (a) during roll up; (b)  during pairing; and (c) after pairing. (d-i) 
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location, halfway between two ribs. After the vortex sheet rolls up (corresponding to 
figure 12a), the vorticity magnitude in the braid shows local peaks (figure 12d), which 
suggest rib cores according to the lol-definition. However, the other three definitions 
show no such vortex cores in the braid (not shown), suggesting that this vorticity sheet 
does not yet contain ribs (i.e. longitudinal vortices). Once pairing starts (figure 12b), 
local peaks in 101 in a streamwise (i.e. y ,  z )  plane through the braid centre become more 
pronounced (figure 12e). At this stage, A -  and Q-definitions show the existence of ribs 
in the braid region (figure l2f, g). However, the &-definition fails to identify these 
(figure 12h). As pairing continues (figure 12c), the accumulation of streamwise 
vorticity within ribs in the braid region intensifies. At this point, the local peaks of 101 
in the braid due to ribs are then recognized as vortex cores by the &-definition (figure 
129. Thus, in contrast to A,-definition, A- and Q-definitions recognize ribs in the braid 
region while they are still ribbon-like (with elliptic cross-section) and well in advance 
of their ‘collapse’ into recognizable vortices with nearly circular cross-section. 

As the second example, we consider the collision of two vortex rings which are 
initially oppositely polarized (this simulation was done by Dr D. Virk). The 
configuration of the two rings is the same as case I11 of Kida, Takaoka & Hussain 
(1991) except that, in the present case, the initial vortex rings are opposite polarized 
(i.e. vortex has a flow along the azimuthal direction in the core; these flows are such 
that the helical vortex lines in the core are right-handed in one vortex and left-handed 
in the other). A detailed description of the dynamics of a polarized ring appears in 
Virk, Melander & Hussain (1994). The time evolution of the vortex core boundary is 
shown using the A, = 0 surface in figure 13 (a-d). We consider a plane (marked as A-A’ 
in figure 13 d) where the reconnected and original vortex cores are fused together. We 
apply all four definitions to this plane; the differences among the definitions are 
obvious from the contours in figure 13(e-h) drawn in the same spatial scales. The 
vortex core identified by the lol-definition at any level (figure 13e) is significantly 
different from the boundary given by the &-definition (figure 13f). The vortex core 
based on the A-definition (figure 13g) occupies a much larger area than that based on 
the A,-definition and shows noisy boundaries, as in 95.3. Figure 13(h) shows that the 
details of the vortex core boundary based on the @definition are slightly different from 
those based on the A,-definition. 

As the final example, we consider the evolution of an axisymmetric column vortex 
with core size non-uniformity where strong core dynamics occurs (for details of core 
dynamics, see Melander & Hussain 1993). Initially, the circulation rug at a fixed r is 
perturbed sinusoidally in the axial direction, and the distributions of the circulation and 
axial vorticity are shown in figures 14(a, b). Note that the axial velocity and azimuthal 
vorticity are initially zero everywhere, but emerge immediately as a result of core 
dynamics. The initial vortex core boundary identified by the Az-, Q-, and A-definitions 
corresponds to the radius where au,/ar = 0, and are the same, as shown in figure 14(c). 
Note that, as mentioned in $2.3, no (01 isosurface matches the initial vortex core 
boundary identified by the A,-, Q-, and A-definitions. 

The evolutions of vortex core boundaries (marked by a thick line) identified by the 
Az-, A - ,  and Q-definitions are shown in figure 14(d-f) for four instants (T,-T,) covering 
approximately a half-period of the evolution of the core dynamics cycle; the differences 
between the three definitions at each of the instants are clear. The vortex core identified 
by the A,-definition (figure 14d) clearly shows core deformation due to core dynamics. 

Distributions in an (y,z)-plane cutting through the braid: ( d )  IwI contours during roll up; (e) 10) 
contours during pairing; cf) A contours during pairing; (g) Q contours during pairing; (h) - A ,  
contours during pairing; and (i) - A ,  contours after pairing. 
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FIGURE 14. Evolution of an axial vortex with core non-uniformity in the meridional plane. (a, b) 
Initial distributions of: (a) rus and (b) w,. ( c )  Initial vortex core boundary identified by A2-, Q-, and 
A-definitions. (&j’) Evolution of vortex core boundaries (at successive times T,, <, T, and q) 
identified by: (d )  A,-definition; (e) Q-definition; and (j) A-definition. 

However, the one identified by the Q-definition shows localized (low-enstrophy) bubbles 
on the axis excluded from the vortex core (figure 14e); note the similarity to the cases 
shown in 55.4. The vortex core identified by the A-definition does not show a bubble 
on the axis, but it shows three waves (figure 14f) instead of the single wave shown in 
the &-definition (figure 14d). The low-enstrophy bubbles are indeed intrinsic to core 
dynamics (Melander & Hussain 1993), but are also integral parts of the vortex core. 

In summary, the Q- and A,-definitions tend to be similar but often differ from the A- 
and (ol-definitions ; however, the Q- and A,-definitions show significant differences in 
regions where vortex stretching or compression are significant. Assuming that the A,- 
definition represents the underlying vortical structures more accurately than the other 
three definitions (based on data discussed in the previous sections), the evolution of 
connected negative A, domains appears more appropriate for studying evolutionary 
dynamics and related flows physics of vortices and coherent structures. 
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6. Concluding remarks 
Among the four definitions, only the A,-definition is found to represent the topology 

and geometry of vortex cores correctly for the large variety of flows considered in this 
paper. The A,-definition corresponds to the pressure minimum in a plane, when 
contributions of unsteady irrotational straining and viscous terms in the Navier-Stokes 
equations are discarded; this way, only the contribution of S2 +a2 to p,ij is taken into 
account. This is the underlying reason for the success of our A,-definition in 
representing the vortex core geometry correctly in unsteady and low-Re flows, while 
the definition based on the pressure minimum misrepresents the vortex core geometry 
in these and many other situations. 

Recall that A, is the median of the three eigenvalues of S 2 + a 2 ,  and Q = 
-+(A,+A,+A,). Although in most cases the Q- and A,-definitions result in similar 
vortex cores, they can be quite different, as shown to be so for an axisymmetric axial 
vortex within a vortex ring and a conically symmetric vortex with axial velocity. In the 
conically symmetric vortex, the Q-definition incorrectly shows a hollow core near the 
centre and hence misrepresents the vortex core in this case. For the axial vortex passing 
through a vortex ring, the vortex core based on the Q-definition is disconnected, 
implying that vortex identification by the Q-definition may be incorrect when vortices 
are subjected to a strong external strain. Thus, we expect problems with the Q- 
definition for vortices with strong core dynamics. 

For DNS data, A tends to be slightly positive even outside the vortex cores. As a 
result, the A-definition has a noisy boundary which overestimates both the vortex core 
size and the predominance of small scales in the flow. For example, in a circular jet, 
the A-definition incorrectly shows one (singly connected) blob, instead of the actual 
vortex ring (with a hole). In addition, the A-definition shows a spurious detached 
vortex core in a conically symmetric vortex. 

The lo(-definition does not have an a priori defined level, so that the vortex core 
boundaries based on this definition are ambiguous. For vortex cores embedded in a 
surrounding flow with a shear comparable to the vorticity within the core (e.g. wall- 
bounded and homogeneous shear flows), the maximum IwI may be located outside the 
vortex core, causing even a high-level 101 surface to misrepresent the vortex core. 

Being a non-local variable, pressure has an inherently larger scale than the vortex 
core; hence, the scale of the vortex core is misrepresented by a pressure isosurface. For 
instance, the pressure within a rib in a mixing layer may have a value near that of the 
ambient. Thus, a pressure isosurface depicting the ribs may obsure both the rib and roll 
vortices. 

Hussain (1986) defined a coherent structure in terms of vorticity as ‘a coherent 
structure is a connected turbulent fluid mass with instantaneous phase-correlated 
vorticity over its spatial extent’. Since coherent structures are vortical, we suggest that 
coherent structures be defined as domains of phase-correlated negative A, instead of 
phase-correlated vorticity. 

We are grateful to Wade Schoppa and Nick Kevlahan for helpful comments and 
suggestions. This research was funded by the AFOSR grant F496620-92-5-0200 and 
the ONR grant NOOO14-89-5-1361. 
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